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Abstract. We investigate the conductance of a quantum wire with two embedded quantum dots using a
T-matrix approach based on the Lippmann-Schwinger formalism. The quantum dots are represented by
a quantum well with Gaussian shape and the wire is two-dimensional with parabolic confinement in the
transverse direction. In a broad wire the transport can assume a strong nonadiabatic character and the
conductance manifests effects caused by intertwined inter- and intra-dot processes that are identified by
analysis of the “nearfield” probability distribution of the transported electrons.

PACS. 73.63.Nm Quantum wires – 73.23.Ad Ballistic transport – 75.47.Jn Ballistic magnetoresistance

1 Introduction

Transport through vertical or lateral double dot sys-
tems has been investigated by many groups experimen-
tally [1–6] or theoretically [7–13], just to mention few.
In most of these models the researchers use effective
Hubbard-type models or exact diagonalization for few
electrons in order to describe the effects of higher order
correlations on the electron transport. Other studies have
focused on describing the effects of the interaction of the
geometry of the leads and the quantum dot, where com-
monly, the system tracted is a dot embedded in a quan-
tum wire [14,15]. The focus has then been on resonances
caused by the interplay of the discrete quasi-bound states
of the dot and the continuum of the wire [16,17], or earlier
on quantum bound states in a classically unbound system
of crossed wires [18].

To describe the transport process various implemen-
tations of a transfer-matrix method have been used [14,
15,19–21], nonequilibrium Greens functions [22], or meth-
ods built on the Lippmann-Schwinger approach to scat-
tering [23–26]. Not forgetting that similar methods have
been applied in the rich field of molecular transport
where commonly nonequilibrium Greens functions [27] or
a Lippmann-Schwinger approach [28] have been used in
combination with a DFT formalism.

In a broad wire the scattering center or centers can
lead to a complex mixing of subbands that has often been
analyzed in numerical calculations by monitoring the in-
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tersubband transmission coefficients. Here we apply an ap-
proach built on the Lippmann-Schwinger formalism that
can handle a wide range of smooth scattering potentials
embedded in a quantum wire, and which allows us to ac-
cess the probability distribution of the electrons in the
wire [23,25].

It is well known that transmission of electrons through
a quantum dot shows resonance structures. For the case
of a weakly coupled dot – dot in which electrons are sep-
arated from the connecting leads by tunneling barriers –
the resonance peaks in the transmission are due to the
alignment of the incident electron energy with the quasi-
bound levels in the dot [29–31]. Interestingly, the quasi-
bound levels of similar nature still exist in the case of an
open quantum dot – where tunneling barriers between the
dot and the lead are absent. These quasi-bound levels are
strongly coupled to the wire, and give also rise to reso-
nances in the transmission. However, resonantly reflected
dip structures, rather than resonantly transmitted peaks
structures, become the signatures for the resonances.

We investigate a system composed of a quasi two-
dimensional quantum wire in no external magnetic field
with a parabolic confinement in the direction transverse
to the transport. Embedded laterally in the quantum wire
we have two identical quantum dots with their centers
separated by the distance 2d, but the effective size of the
smoothly Gaussian shaped dots is on the order of d/8. We
shall consider a narrow wire chosen such that the depth
of the dot is a bit larger than the energy separation of the
unperturbed subbands of the wire, and a broad wire where
the subband separation is only 1/10 of the dot depth. We
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consider two different dot sizes, but in both cases the ef-
fective size of the dot does not broaden the wire. We are
thus considering a wire with embedded dots in between
the limit where the dots are similar to an impurity repre-
sented by attractive δ-functions, and the case where the
dots can be considered of the same width or wider than
the wire. We assume the electrons to be incident in some
of the lowest lying energy subbands of the wire, but due
to the geometry of the system we have to include several
more subbands in the calculation in order to describe the
transport correctly.

Here the dots are far enough apart that correlation
effects should be minimal, but the mode mixing and the
interplay of the inter- and intra dot processes should be
large. The probability density of the electrons will turn
out to give us an excellent insight into what is happening
in the system when the conduction is far more complex
than in an ideal wire.

The experimental systems most likely to be able to ful-
fill our conditions on model parameters are quantum wire
and dots systems electrostatically defined in semiconduc-
tor heterostructures with gates and/or backgates.

2 Models

We consider a multi-mode transport of electrons along the
z-direction through a two-dimensional quantum wire de-
fined by a parabolic confinement in the x-direction with
the characteristic frequency E0 = �Ω0. The electrons inci-
dent from the left (z → −∞) impinge on a scattering po-
tential composed of two Gaussian wells located at z = ±d

Vsc = V0

{
e−β((z−d)2+x2) + e−β((z+d)2+x2)

}
. (1)

The scattering modes are expanded in the transverse
modes χm

ψ+
nE(r) =

∑
m

ϕn
mE(z)χm(x), (2)

that are the eigenmodes of the parabolic confinement
of the quantum wire. An incident electron with energy
E = �

2k2
n(E)/(2m) + εn, where εn = �Ω0(n + 1/2) can

propagate in mode n if εn < E otherwise the state is
evanescent. We use the coupled multi-mode Lippmann-
Schwinger equations [32,33] to establish a set of coupled
integral equations for the T -matrix [23] which in turn is
used to calculate the transmission amplitude that within
the Landauer formalism leads to the linear response con-
ductance at vanishing temperature [34,35]

G =
2e2

h
Tr[t†t]. (3)

The T -matrix can also be used to construct the proba-
bility density of the scattering states through their wave
functions [23]

φn
mE(z) = φn0

mE(z) +
m

π�2

∫ +∞

−∞
dp

√|p|eipz

k2
m − p2

Tmn(p, kn).

(4)

All matrix elements have been calculated analytically and
special care has been taken to include enough modes in the
numerical calculations to reach convergent solutions. The
singular part of the integration for the scattering states (4)
and the T -matrix has been completed analytically [23].

The mirror symmetry of the scattering potential (1)
along the center, x = 0, of the wire results in finite ma-
trix elements only between transverse modes of the same
parity.

3 Results

We shall consider a broad (E0 = �Ω0 = 1 meV) or a
narrow (E0 = �Ω0 = 6 meV) quantum wire with two
identical embedded quantum dots located at z = ±d.
The dots are small, with β = 0.01 nm−2, or larger with
β = 0.003 nm−2 in equation (1). The depth of the dots
or wells is V0 = −10 meV, and we assume GaAs param-
eters yielding the effective Bohr radius a0 = 9.79 nm,
and the Rydberg Ry = 5.92 meV. Clearly, we can ex-
pect the transport to vary strongly with the width of
the wire since in the case of the broad wire in Figure 1
several subbands or modes can be coupled by the scat-
tering potential. In the narrow wire the characteristic
length aw =

√
�/(mΩ0) = 13.8 nm, in the broad one

aw = 33.7 nm.

3.1 Narrow wire

The conductance of the narrow wire is shown in Fig-
ure 2 for both types of dots as function of the parameter
X = E/E0 + 1/2, whose integral part numbers the prop-
agating subbands participating in the transport at a par-
ticular energy E. The figure indicates that the main role
of the dots in the narrow wire is to define a semitrans-
parent cavity in between them. In the case of the small
dots this cavity has a well defined length and well known
geometrical resonances are seen in the conductance as the
separation, d, of the dots is increased. When the dots are
larger (lower panel) the higher order resonances vanish
and one or two dips occur in the conductance, character-
istic of an attractive scattering potential. For the smallest
separation of the dots, when they partially overlap we see
two dips. In Figure 3 we present the probability density
for three relevant cases in order to better understand the
microscopic processes in the system. In Figure 3a we see
the probability density for the large dots corresponding to
the lowest resonance in the lower panel of Figure 2, when
d = 8a0. As expected the main probability density is lo-
cated in the cavity between the dots. Interestingly, due to
the finite size of the dots we also see a small density at the
location of each dot. Here the electrons enter the system
in the lowest mode n = 0 and exit the system in the same
mode, this together with the total transmission leads to
a constant probability density in the wire away from the
scattering potential. In Figures 3b and c we see the prob-
ability density at the dips for the large dots as d = 2a0.
The two states causing the dips are the symmetric and
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Fig. 1. (Color online) The broad quantum wire with two em-
bedded large dots. The two horizontal axes are not drawn in
the same scale, the dot potentials (4) are circular. E0 = �Ω0 =
1.0 meV, V0 = −10 meV, βa2

w = 0.571, aw = 33.7 nm, and for
GaAs a0 = 9.79 nm.
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Fig. 2. (Color online) The conductance in units of G0 = 2e2/h
of a narrow parabolic wire with embedded small dots βa2

w =
1.90 (upper panel), and large dots βa2

w = 0.571 (lower panel)
for different displacement z = ±d from the center of the wire
z = 0 as function of X = E/E0 + 1/2. E0 = �Ω0 = 6.0 meV,
V0 = −10 meV, aw = 13.8 nm, and for GaAs a0 = 9.79 nm.

the anti-symmetric quasi-bound state, the latter one oc-
curring at a bit higher energy as expected. The structure of
the density in either case reminds us that due to the high
symmetry of the dot potential, equation (1), the evanes-
cent state causing the reflection of the n = 0 mode is in
the third subband with n = 2 and is thus broader than
the resonant state in Figure 3a. Due to the high probabil-
ity density of the electrons in the evanescent state we do
barely see the incoming and the reflected density on the
left side of the scattering potential on the chosen color
scale.

Fig. 3. (Color online) The probability density of the scattering
state ψE(x, y) in the narrow quantum wire in the presence of
two embedded large dots. The incident energy of the n = 0
mode corresponds to X = 1.08 and d = 8a0 (a), X = 2.58 and
d = 2a0 (b), and X = 2.80 and d = 2a0 (c), corresponding
to the peak and the two dips, respectively, in the conductance
in the lower panel of Figure 2. E0 = �Ω0 = 6.0 meV, V0 =
−10 meV, aw = 13.8 nm, βa2

w = 0.571.

3.2 Broad wire

In order to prepare the analyses of the conduction of a
broad quantum wire (E0 = 1 meV) with two embedded
dots we first show in the upper panel of Figure 4 the con-
duction in the broad wire with only one quantum dot em-
bedded, large or small. The sharp dip seen at the end of
the second conduction step in a narrow wire is turned into
a broad minimum in the broad wire due to the stronger
coupling between the subbands caused by the dot in the
broad wire.

In the lower panel of Figure 4 we display the conduc-
tance of the broad wire with the two embedded dots at
d = 8a0. The presence of the two well separated dots adds
considerably to the fine structure of the conductance com-
pared to the results for one dot. Moreover, this structure
involves the coupling of many subbands and thus requires
the inclusion of approximately 16 of them in the numerical
calculation in order to reach well converged results.
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Fig. 4. (Color online) The conductance in units of G0 = 2e2/h
of a broad wire with one embedded dot at the center z = 0,
(upper panel), and two dots at z = ±8a0, (lower panel) as
function of X = E/E0 + 1/2. E0 = �Ω0 = 1.0 meV, V0 =
−10 meV, aw = 33.7 nm, and for GaAs a0 = 9.79 nm. A
small dot is characterized by βa2

w = 11.37 and a large one by
βa2

w = 3.41.

First, we start with the electron probability density
shown in Figure 5 to gain insight into the multitude of
processes taking place in the case of the small dots. Sim-
ilarly, as in the case of the narrow wire we have a trans-
mission resonance at X = 1.284 caused by a state located
in the “cavity” between the dots shown in Figure 5a. We
also see small probability maxima at the dots themselves.
The second transmission resonance at X = 2.07 is caused
by the next mode in the inter-dot cavity and is shown in
Figure 5c, but it is also interesting to check the proba-
bility density at a bit lower energy X = 1.98, see Fig-
ure 5b. Here there is considerable reflection and as the
figure shows this can be interpreted as the electrons be-
ing reflected by the second dot, the first dot simply loses
its effects in a minimum in the interference between the
incoming and reflected wave. Thus, by increasing the en-
ergy to X = 2.76 we observe a reflection by the first dot
in Figure 5d. The valley structure in G around X = 2.76
corresponds to the electrons making inter-subband tran-
sitions from n = 0 to the subband threshold of the third
subband (n = 2) forming a quasi-bound state. The wide
valley structure implies a short life time of such a state.

At X = 2.86 we see a narrow resonance in the conduc-
tion. The corresponding probability density in Figure 6
has the typical structure of an evanescent state in the
third subband for the incoming n = 0 state and a normal
conducting mode for the n = 1 instate. The evanescent

Fig. 5. (Color online) The probability density of the scattering
state ψE(x, y) in the broad quantum wire in the presence of
two small embedded dots centered at z = ±8a0. The incident
energy and modes correspond to: (a) X = 1.284 and n = 0,
(b) X = 1.98 and n = 0, (c) X = 2.07 and n = 0, and (d)
X = 2.76 and n = 0. E0 = �Ω0 = 1.0 meV, V0 = −10 meV,
aw = 33.7 nm, and βa2

w = 11.37.

state clearly belongs mainly to the first dot, but is also
fairly extended into the inter-dot cavity.

To finish the observation of the case of the small dots
we examine the electronic probability density for the two
narrow dips found at X = 3.88, and 3.94. These are pre-
sented in Figure 7 for the two lowest incoming modes
n = 0 and 1. Here the first and the third mode conduct
partially, as can be confirmed for the n = 0 mode in Fig-
ures 7a and c. The two n = 0 modes are almost identical,
but the second incoming mode n = 1 is reflected due to an
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Fig. 6. (Color online) The probability density of the scattering
state ψE(x, y) in the broad quantum wire in the presence of
two small embedded dots centered at z = ±8a0. The incident
energy and modes correspond to: (a) X = 2.86 and n = 0,
(b)X = 2.86 and n = 1. E0 = �Ω0 = 1.0 meV, V0 = −10 meV,
aw = 33.7 nm, and βa2

w = 11.37.

interaction with an evanescent mode in the fourth n = 3
subband. The evanescent modes in Figures 7b and d show
the symmetry of the fourth band and are the distinct two
lowest symmetric and antisymmetric quasi-bound states
of the dot system.

The system with larger dots allows for a richer mix-
ture of intra and inter-dot processes or states. The lowest
transmission resonance is now a broad feature with a cor-
responding electronic probability density that is a clear
superposition of a state in the inter-dot cavity and states
located at each dot, see Figure 8a. The next transmission
resonance at X = 2.28 is narrow and for the incoming
n = 0 mode is composed of a state with a high proportion
of a pz-type atomic orbital or higher on each dot as the
probability in Figure 8b shows. The n = 1 in-mode on
the other hand is basically a py-type state in the inter-
dot cavity and to lesser degree py-states at each dot, see
Figure 8c. In the conductance minimum at X = 2.77 we
observe the familiar evanescent mode (Fig. 8d) in the third
subband reflecting a large portion of the incoming wave.

At X = 3.67 the conductance displays a narrow reso-
nance that is caused by an evanescent state in the fourth
subband interacting with the second incoming mode as
can be verified by the probability density shown in Fig-
ure 9b. Here is also curious to note that the scattering po-
tential mixes up the first and the third incoming modes;
Figure 9a shows the incoming n = 0 state leaving the scat-
tering region in the n = 2 mode, and the opposite process
is seen happening in Figure 9c. In the first case there is a
considerable probability for the electron in the first dot,
and in the second case this is reversed. Here, one should

Fig. 7. (Color online) The probability density of the scattering
state ψE(x, y) in the broad quantum wire in the presence of
two small embedded dots centered at z = ±8a0. The incident
energy and modes correspond to: (a) X = 3.88 and n = 0,
(b) X = 3.88 and n = 1, (c) X = 3.94 and n = 0, and (d)
X = 3.94 and n = 1. E0 = �Ω0 = 1.0 meV, V0 = −10 meV,
aw = 33.7 nm, and βa2

w = 11.37.

remember that even though we talk about large dots in
this case the effective size of the dots is comparable to
the width of the incoming state and thus the third mode
is quite broader than the dot, and the broadness of the
wire leads to large matrix elements between the the first
and the third mode of the wire. This mixing of incoming
states, a character of nonadiabatic transport, or crosstalk
between the channels or modes, is not limited to the peak
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Fig. 8. (Color online) The probability density of the scattering
state ψE(x, y) in the broad quantum wire in the presence of
two large embedded dots centered at z = ±8a0. The incident
energy and modes correspond to: (a) X = 1.55 and n = 0,
(b) X = 2.28 and n = 0, (c) X = 2.28 and n = 1, (d) X = 2.77
and n = 0 E0 = �Ω0 = 1.0 meV, V0 = −10 meV, aw =
33.7 nm, and βa2

w = 3.41.

at X = 3.67. At the broader peak at X = 4.3 the same
also happens for the odd modes n = 2 and n = 4.

As expected, for higher energy the conductance of the
broad wire becomes similar for the small and the larger
dots except for the Fano resonances that represent quasi-
bound states present in the energy continuum that depend
on the shape of the pertinent dots.

Fig. 9. (Color online) The probability density of the scattering
state ψE(x, y) in the broad quantum wire in the presence of
two large embedded dots centered at z = ±8a0. The incident
energy and modes correspond to: (a) X = 3.67 and n = 0,
(b) X = 3.67 and n = 1, and (c) X = 3.67 and n = 2 E0 =
�Ω0 = 1.0 meV, V0 = −10 meV, aw = 33.7 nm, and βa2

w =
3.41.

4 Summary

We have explored the transport through a quantum wire
with two embedded quantum dots that are not broader
than the wire. We find in the transport an interplay be-
tween intra- and inter-dot scattering processes. We ob-
serve resonant transport through quasi bound states in the
dots and also through resonances or quasi bound states be-
tween the dots. The interdot resonance states would have
been very hard to identify without the help of the electron
probability density.

By tuning the energy we can identify situations where
the electron waves seem to be reflected by only one or the
other embedded dot in the wire. Here is though impor-
tant to have in mind that we are indeed observing a wave
phenomenon that can not be arbitrarily localized in space.

In particular, we find for the larger dots in a broad wire
drastic expamles of nonadiabatic transport [14]. Bryant
explores the transport through a hard-wall quantum wire
with a quantum dot defined by a tapered center and
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separated from the wire region by two rectangular bar-
riers [14]. He finds the mode-mixing effects to be more
important when the transmission occurs by resonant tun-
neling and when the tapering is not quite smooth. Here
we observe strong mode-mixing in ballistic transport when
the energy subbands of the wire are closely spaced on the
scale of the depth of the quantum dots and the size of the
dots results in large matrix elements between the various
transverse modes. Here is important that the symmetry of
the centered dots establishes selection rules for the matrix
elements that are thus of very variable magnitude. Also,
even though one quantum dot of Gaussian shape can be
considered smooth, then it is more difficult to measure
the smoothness of the system of two smooth dots very
well separated.

The methods employed to calculate the conductance
have been applied to wires with parabolic (here) and hard
wall confinement [23] in the transverse direction and are
applicable to general scattering potentials as long as care
is taken in selecting a sufficient number of input modes.
This method has also been extended to a wire system in
a homogeneous external magnetic field [25].

The research was partly financed by the Research and Instru-
ments Funds of the Icelandic State, and the Research Fund
of the University of Iceland. C.S.T. acknowledges computa-
tional facilities supported by the National Center for High-
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